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Dimensional Analysis of Nonlinear Oscillations in Brain, Heart and Muscle

G. Mayer-Kress *'!!, F. Eugene Yates!, Laurel Benton!, M. Keidel®, W. Tirsch®, S.J.

Poppl®, K. Geist!*

Abstract We present some numerical studies on the dimensional analysis of temporal oscil-
lations measured in the human electroencephalogram (EEG), heart rates (HR), and muscle
tremor. We show that it is insufficient to characterize the individual system by a single”
dimension value alone. We give some detailed numerical analysis ot the scaling structure
of the attractors reconstructed from the time signal.

Qur methods are based on the concept of local gauge functions which we derive from the
raw signals as well as from the transformed signal obtained from singular value decomposi-
tion. We were able to confirm and improve earlier results un the change of dimensionality
of EEG signals. For heart rates and muscle tremor we observe significant changes in the
dimensionality aepending on the state of the system.

We further try to indicate which factors enter dimension estimates and where specific

problems lie in each of the examples.
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1. Introduction

There are many mathematical iodels in the literature, which try to explain the origin
of self generated rhythmical behavior in biological systems [1,2,3]. Some of the models
are of a deterministic and nonlinear nature which can undergo a Hopf bifurcation to a
periodically oscillating state. Pure periodicities are, however, rarely realized in biological
systems and thus stochastic forces are introduced to reproduce the irregularities in the
oscillations. The cngins of these stochastic forces can be in the uncontrolable influences
of microscopic processes, which perturbe the frequencies and phases of the oscillatcrs.

Other sources of irregularities can be feedback loops which couple the oscillating system
to other slowly varying processes in the organism. For instance in the generation of the
EEG, as well as in other processes, which are generated by neural activity, one can envision
that uncorrelated firings of neurons might cause quasi-stochastic perturbations. Here we
are more interested in slow changes of the dynamics, e.g. changes in mental activity (shift
of concentration, sensory input etc.). In the variability of heart rates it has been possible
to identify several low frequency perturbations as discussed in more detail below. In the
conte xt of muscle tremor the main source of nonstationarity seems to be the tiring of the
muscle.

In this paper we don't try to model the biological mechanisms which generate these
oscillations but we try to describe and apply some methods from nonlinear dynamical
systems theory which we have used to study the oscillatory signais from three of the mo-:t
prominent biological oscillators: The electrical signal from human brains (EEG) and hearts
(EKG) and muscles (EMG). During the last couple of years one could observe a growing
research ectivity of analysing dynamical properties of biological systems both in classical
terms (4] and using algorithms from nonlinear dynamical systems like fractal dime..sions

and entropies [5]. It appears that in the f;eld of nonlinear ¢yaanical analysis we arc



still in the beginning stages of a methodological evolution. Thus there typically exists
common agreement as of how to compute and interprete spectral information and also
about possible artefacts that have to be taken care of. The situation is different, however,
in the calculation of, say, fractal dimensions from a timeseries. Many different algorithms
and methods have been proposed which efficiently produce converging results in simple
cases (d < 3), but for more complicated sets the different methods seem to have problems
in reproducing reliable dimension values with a realistic number of data points.

There have been some efforts, however, to standardize the methods of dimension cal-

culation, so that results from different authors can be compared ("pecos standard”).

2. Estimating the dominant dimension from local gauge functions

2.1 Geometrical reconstruction

In this section we would like to give a brief overvue of the concepts of dynamical dimension
estimates and then describe in some detail the method we have used to obtain an unbiased
cstimate of the most dominating dimension and some detailed structure of the acaling
properties of the reconstructed attractors. We start with the -now classical- method of
time-delayed variables for reconstructing attractors [6): Assume we are measuring a single
variable time-series z(t,,) = z, then we can reconstruct vectors Z,, in a n-dimensional
state space through time delay coordinates: £ = (Zm,Zm-k+Zm—=2ks -+ ) Tm=(n-1)k), Where
m runs from (n — 1)k + 1 to the number nyy, of data points and k is the time delay (6]. In
fig. 1 we plot the time series z,, and alsc state space reconstructions in the plane (n = 2)
for two different delay times k = 1 and k = 4.*

The time delay should be chosen in a way that the coordinates of #,, are maximally
independent. We use the concept of mutual information content [7,8] to determine the

optimal delay time.

* Here and in the following figures we want to illustrste our method on heart rate date from a healthy femule, taken during regular
dally activity with the help of & Holter monitor. A more detailed description follows below



2.2 Local Gauge functions and pointwise dimensions

From the data vectors Z,, we select a subset of n,.; equally spaced (in time) reference

vectors E, = & wherev = [ﬁ‘:?] For each of the n-dimensional reference vectors we
determine the local gauge function Ng(r) = Tiareo(r — |IT — £ ;|1), which counts

the number of data points in a neighborhood of size r!). In a log-log-representation this
function typically exhibits a scaling region [rmin, "maz] ?) over which a slope can be defined.
This slope is then interpreted as the pointwise dimension df, of the system at point £ ; (see
e.g. [5,9,10]).

Due to the non-uniformity property [11] of generic attractors we expect that the lo-
cation as well as the size of the scaling region depends on the reference point 3 ;+ In the
widely used Grassberger-Procaccia algorithm [10] for dimension estimation the average
value of Ny (r) is computed over all reference points £, at a fixed value of r. This induces
for the case of finite scaling regions an extra error which can be avoided by computing
the pointwise dimension individually for each of the reference points In the strict sense
the dimension is determined through the scaling behavior at infinitesimal distances. In a
practicel sense this is not only unfeasable but also in many cases unphysical: The relevant
dynamics which we want to study is not necessarily the dynamics at very small scales,
where we know that noise becomes dominant. Also for very small «cales and limited data
sets we know that the statistics becomes bad. Therefore we want to study the dominant
dimension in the sense that it describes the scaling behavior with the least disturbances
(i.e. the best fit of a straight line in a log-log plot) over the largest range [12]. In fig. 2
we show a series of gauge functions in a log-log representation for embedding dimensions
1 <n < 20 for the same koart rate data as in fig.1. We see for small values of log

the effect of the finitc resolution of the ineasurement (v 1%). The solid line indicate the

1) @(r) m Lforr > 0and O(r) m 0 elsewhere .
) Thie means that for # @ [P mia:"mes) We have Nl'(r) - e([,) r ) where c([,) is & position dependent scale factor.
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fit region for each embedding dimension determined by the algorithm. We think that this
method corresponds in a more systematic way to the procedure of extracting a dimension
value from a visual inspection of the dimension curves. In fig. 3 we can see an example of
how the scaling range is selected by our algorithm for embedding dimensions n < 20.

In order to minimize the bias in dimension estimates we introduced an algorithm which
determines fit-range, goodness of fit (GF) and estimated dimension antomatically for each
reference point and for each embedding dimension. In this way we want to make sure
that the same criteria are entered in each of the data sets and therefore results become
better reproducable and can be compared with other data sets. The main assumption
in the "dominant” dimension estimate is that the relevant scales at each location on the
attractor can be found by sesrching -for a given minimal scaling factor a = Imaz over ]
which the attractor scales- for that value of lcg r for which the fit of a linear segment of
length log a to the iog of the gauge function becomes optimal. In order to get well defined
conditions and also in order to make optimal use of the local scaling properties, we expand
the scaling region in the next step until the specified goodness of fit is reached. We use
linear interpolation to compensate for the discontinuities due to the finite coarseness of
our sequence of distance values ry.

Since our reference points are sampled with equal time intervals v = [l‘;“".‘,‘] we obtain
a sequence of dimension values which reflects the temporal ordering on the attractor. This
tcmporal information is completely lost in a direct calculation of the Grassberger Procaccia
(GP) dimension. Our method is also superior to repeated calculation of the GP- dimeusion
on subsets of the time series, since in that case one is considerably more limited in the
number of relevant data points available for the estimate.

It is possible through our method to localize specific regions on a reconstructed attrac-

tor which are responsible for significant chansges in the apparent local dimensionality.



In our fitting procedure we determine a dimension estimate for each value of the em-
bedding dimension. Again for stability reasons we want to avoid a discontinuous jump
in the dimensjon estimate as a function of the embedding dimension throug a change in
the fitting interval. Thus we monitor the dependence of the fitting interval, selected by
our algorithm, on the embedding dimension and in most cases the discontinuity in the
dimension values is due to this shift in the fit region. In fig.3 we show an example where
we have plotted the extension of the fit region for increasing embedding dimensions for
one specific reference point. In fig. 4 we plot the pointwise dimension obtained in this
way as a function of the reference point. This is equivalent to probing the attractor at
different geometrical locations and also at different instances in time. We think that this
information is very helpfull in associating changes in the complexity of the dynamics with
geometrical features of the reconstructed dataset and there for get some better insight into
the characteristics of the system. The oscillating variation of the dimension values in fig.

4 is quite apparent, its clinical interpretation is not clear yet.

2.3 Singular value decomposition

If we chose a optimal delaytime for which the mutual information between z,, and z,,-&
becomes minimal then we only know that the coordinates of the data-vectors Z,, are pair-
wise optimally independent but still there might be a large redundancy contained in the
datavectors through e.g. higher order correlations. A method which represents the data
vectors in a basis with minimal correlation has been first applied to dimension calculations
by Broomhead and King [14,15]. It is based on a singular value decomposition method
which corresponds to an expansion of the datavectors into modes which are dominantly
contained in the signal. In their original paper Broomhead and King vzere interested in the
high frequency content of their signal and therefore used a high sampling rate and recon-

structed vectors which would cover windows :f the timeseries of a period corresponding to



the highest relevant frequency contained in the signal. Since most of the chaotic phenom-
ena appear in the subharmonic low frequency range we have chosen windows (patterns) in
the timeseries of maximal length of the order of typical decaytimes of correlations. To be
more precise, we determined the window lenght as the product of the characteristic time
determined by the first minimum of the mutual information content and the maximal em-
bedding dimension used for the dimensional analysis without singular value decomposition
(SVD). Thus the maximal time segment covered by any data vector is of the same order
in both methods. We expect that patterns of a larger temporal extension would be too
contaminated by noise which will be amplified by the chaotic dynamics of the system. In
fig. 5 we show the gauge function of the same reference point as in fig. 2 after SVD with
windowlength 100. In fig.6 we see that the oscillating structure of the time dependence of )
the pointwise dimension is also visible after SVD. In fig. 7 we show the histogram for the
data of fig. 4 (solid lines) and for fig. 6 (dotted lines). Typically the distribution becomes
more normal after SVD.

In fig. 8 we show the dependence of the estimated dimension value < dZ, >g on the
embedding dimension n. The error bars correspond to to the standard deviation of the
dimension distribution over the reference points which have reached the minimal goodness
of fit. They are solid lines for the original data and broken lines after singular value
decomposition. Note the fast saturation to a smaller value in the latter case. This seems
tc be typical for this method, but we have cases where this can lead to underestimation of
the true dimension values [16]. In order to get some idea of the overal scaling properties of
the datasets we plot the percentage of reference points which reach a certain goodness of
fit GF as a function of GF and embedding dimension n. We see in fig. 9 that without SVD
mosi of the reference points fulfill our criterion for GF > 0.3 for our example set. The

scaling properties become much better in the7case of SVD, and it is also typically better for



data of brain- or muscle oscillations. We also tested how the observed dimension depends
on GF and on the embedding dimension n. The results for our test example are presented
in fig. 10. We observe a steady increase of the dimension when we increase G# and n.
Again we see much better convergence after SVD (fig. 11). The opposite tendency seems
to hold for the standard deviation of the dimension values, i.e. a good scaling behavior
(small GF) is associated with a high variability of the dimension values (fig. 12). A more
detailed information about this phenomenon can be obtained in fig. 13, where we show
how the histogram of fig. 6 evolves with increasing embedding dimension n.

In the following we try to examine a few specific examples from the three areas brain,

heart and muscle and discuss some problems and results.

3. Dimensionality of the Electroencephalogram (EEG)

There exists now a fairly large number of publications on estimating dimensions from EEGs
[17,... ,24].

It is known for a long tiiae that the electrical signal of the EEG is in some way related
to the mental activity of the brain. So, for instance it is possible for trained individuals to
distinguish between sleep and awake states by visually inspecting the EEG. Thus there have
many attempts to find some quantitative observables which could measure these changes
[4]. A limited success was achieved by fourier analyzing the EEG signal and specifying
the different mental states according to the distribution of the power of the signal in
different frequency bands. The most famous among them is the frequency band around
10H z (alpha waves) which is in some way related to a relaxed state with eyes closed. The
implicit assumption in this and similar ways of analysis is that the “active modes” in the
brain which produce the electro-magnetic signal, are linear periodic oscillators. It is known,

however that the number of these fourier mgdes can be much larger than the number of



modes which actually are responsible for the physical, or in this case, bio-chemical processes
[25].

Thus, while spectral methods, which analyze frequency bands are optimized for regular
periodic or quasi-periodic signals, the applicability of these methods becomes very limited
in cases where the signal is intrinsically very irregular without very sharp and well defined
frequency bands. This situation of deterministic chaos is known to be fairly common in
nonlinear dynamical systems and is discussed as an origin of many biological and clinical
cases of temporal disorcers.

Improvements in nonlinear methods should make it possible to classify EEg signals
according to their degree of complexity or according to the number of nonlinear modes

which are generating them.

3. Influence of the excitatory anestetics fluroxene

One important application of EEG analysis is anesthesia, where a reliable monitoring
and control of its depth is still a problem which causes many fatalities every year. For a
certain excitatory anestetic an increase in the observed Grassberger-Procaccia was reported
(17,23,24]]. The dimension, measured at the lead P3-O1 was reported to increase from
dgP = 4.3 £ 2.2 before anesthesia to a value of dgP = 8.0 + 3.8 during medium fluroxene
anesthesia. The computation of the averaged pointwise dimension yields in the first case
a value of dyp = 6.4 + 1.2 and in the second case a value of dap = 7.1 £ 0.5 [24]. We
redid the calculatione with slightly modified algorithm (details in the way the optimal fit
range is obtained and the omission of datapoints which are strongly correlated with the
reference points) and found values of d4p = 5.2 £ 1.3 for GF = 0.1 (d4p = 6.7+ 2.0 a for
GF =0.2) and dyp = 8.7 1.1. In fig. 14 we see how, for a given embedding dimension,

the observed dimension increases when the %t gets worse. In a stronger sense this is true



for the anesthesia data. For the dimensions obtained after singular value decomposition
the same tendency holds but for GF < 0.5 we still have dsy < 5.0.

These results show a delicate dependence on details especially at high values of the
dimension. Also we see the estimate [26] confirmed that dimension values considerably
above d = l0g,0(n4ata) are difficult to reproduce. Finally we used the method of singular
value decomposition (figs.15,16) on these data and found values of dsy = 4.7 £ 1.3 and
dsy = 6.3 £1.5. The encouraging result is that we consistently find an increase in the
dimensionality which supports the conjecture that it would be difficult in biological systems
to estimate the absolute value of the dimension but it might be a valuable tool for detecting

relative changes in the complexity of the dynamics.

4. Analysis of Variation in Heart Rate and of Heart Rate Variability

The human heart is a nonlinear, near-periodic oscillator (van der Pol) that operates on a
"squirt-relax” two-process cycle producing an asymmetric waveform. Associated with the
mechanical cycle is an electrical cycle of the same period but of more complex waveform.
The heart rate is usually determined by counting the 1..mber of beats (maxima in the
pressure cycles) per minute that result from the mechanical pumping of the heart into
the blood vessels. But the heart rate can also be defined as the number of R waves (or
P waves) in the electro- cardiographic signal of each mechanical cycle. Because the R
waves are much larger than the P waves, the RR intervals (ranging from 30C msec for fast
heart rates to 2,000 msec for slow heart rates in adults) are often used as the database.
A ordered set suitable for "time series” analysis can then be created by plotting the RR
interval magnitude (msecs) vs. interval number in the sequence of heart beats (of which
there are approximately 100,000 per 24 hours) (see fig. 1). Standard power spectral density

analysis can be applied to such a series. Thcioshape cf the power spectral density function



then gives some indication about variations in heart rate, both periodic and broad band
noise.

For a closer analysis of the variability of heart rate, it is customary to examine the
time series of RR(n+1) - RR(n) (hereafter designated DRR) where n is the beat number
in the temporally ordered sequence. To correct for the fact that many natural processes
have constant coefficients of variation (i.e., constant fractional error - meaning that large
numbers have larger dispersions than do smaller numbers), it is customary to correct the
heart rate variability for the underlying heart rate itself, creating an ordered series of
DRR /RR plotted against sample number in a temporally ordered sequence. These data
are also suitable for "time series” analysis. They may be thought of roughly as a normalized
derivative of the raw data. -

A question of fundamental physiological and clinical interest concerns the character of
the mcdulation of the time relation of heart beats. For example, data on heart rate and
heurt rate variability in premature infants have proved valuable as indices of developmental
changes and reactivity to stimuli. Similar meaires have been used in adults to estimate
risk of sudden cardiac death and to predict mortality after acute myocardial infarction [28
- 40].

It is well known that respiratory cycles are coupled to cardiac cycles, with an overall
ratio of four heart beats per breath for all members of Class Mammalia. Therefore, the
respiratory frequency almost always shows up in a spectral analysis of heart rate data. But
beyond the respiratury sinus arrhythmia, as this coupling is called, there is also a broad
1/f spectrum of the heart beat period [41), and other peaks in heart rate spectra have been
identified [35, 42). It has Deen suggested that these various spectral peaks are associated
with thermal regulation, respiratior. vasomotor tone »lteratiuns and baroreceptor refiexes

[42, 43]. But apart from these couplings of heart rate to other near-periodic physiological
11



processes, there is interest in the residual spectrum after these few peaks are accounted for.
Specifically, what is the character of the troad band noise in the background? Particularly,
one might ask whether there is a 1/f spectral property, as may be typical of chaotic
dynamics and as has been reported by Kobayashi and Musha [41]. It is also of interest to
know what will happen to heart rate variability in the case of denervation of the heart, as
seen after heart transplantation (see [27]).

4.1 Is Heart Rate a State Variable?

Biological state variables may be thought of as those involved in thermodynumic forces
and fluxes, whose behaviors strongly affect the overall stability (health) of the system. An
example of a macroscopic flux variable is cardiac output; an example of a macroscopic
force variable is mean arterial pressure. (Heart rate is a crude estimation of the state
variable cardiac output under conditions in which stroke voluine is nearly constant, but
those conditions are not always sharply defined.) The behavior of a biological state variable
reflects at least four influences: (1) developmental influences that act over a lifetime, (2)
status influences that operate over months or years, (3) modal influences that have to do
with ongoing behavior and operate over seconds to hours, and (4) transients, also operating
over seconds to hours. Respective examples might be: (1) developmental lifetiine variable
- the constraints that a person is a mammalian, human rnale; (2) status variable - age;
(3) modal variable - wakefulness (versus sleep), and (4) a transient variable - exercise or
emotion. (Even though heart rate is not a state variable, it responds to the same four
influences.)

Many physiological state variables are homeodynamically ratlier than komeostatically
regulated. Tlat is to say that their mean operating behavior is not that of a relatively fixed
point or value (homeostasis), but rather that of a generalized limit cycle (orbital stability

as a biological rhythm). In the case of a noix;tate variable such as heart rate, underlying



homeostatic or homeodynamic regulatory processes may be masked by transients and noise.
A major problem in the study of heart rate variability is to determine whether or not it
reflects masking influences or underlying physiological state and state changes.

In the case of heart rate, y(t), the following influences might apply:

y(t) = f(ylv Y2y... ?y‘l)

where y; is the allometric relation for mammals -
HR interval = 0.2 (body weight in kg)0.25

; ya carries the influences of the order, family, genus and species; y3 carries the influence
of sex (women have higher heart rates than men for the same conditions); y4 carries the
influence of age; ys carries the influence of the recent past, including the lifestyle (e.g., ]
how much coffce is regularly drunk); ye reflects the field influence of the ongoing situation
(e.g., exercise); y- constitutes a wastebasket term, including noise that is unresolvable, plus
deterministic or stochastic couplings to other physiological systers such as respiration.

In this analysis items y, through y, are not negotiable, but fixed for a particular individ-
ual at a particular age. Items y;- yr may be altered by lifestyle changes, drug interventions
or environmental changes. Most of the variability of heart rate arises from yq and y,, items
which are not under internal regulation. Some of the HR variability arises from manipu-
lated variables in the regulation of other aspects of circulatory functions. The linear decline
in maximum achievable heart rate with age exemplifies this fact. As weisfeldt et al. (1984)
have clearly shown, cardiac output during (submaximal) exercise is well sustained until
about age 80 in subjects without coronary artery or other serious cardiovascular disease,
in spite of the fall in maximum or near maximum heart rate. An increase in stroke volume

compensates. Cardiac output appears as a defended and regulated variable, but not heart

rate, 13



Sources of heart rate variability incli:de microscopic channel noise in pacemaker cur-
rents; temperature fluctuations; environmental chemicals such as coficine; couplings to
respiration; high energy or high mass activities such as exercise, eating, sleep/wake transi-
tions or pcstural shifts; and low energy/mass inputs that are more "informational”, such as
being criticized or being embarrassed (i.e., emotional inputs). Viewed this way heart rate
variability is seen as being a sort of final common pathway for a wide variety of influences;
therefore it will be intrinsically difficult to resolve time series records of heart rate into
state assessments, except under very well defined conditions. Such conditions might in-
clude anesthesia, strictly controlled environments, and dominant physiological state (rest,
fasting). A disadvantage of studving heart rate under such conditions is that its behavior
may be irrelevant and there may be poor generalizability beyond the very special condi-
tions under which the measurements were made. Therefore, one is tempted to study heart
rate in adults, and sowae children, under 24 hour or longer monitoring conditions in which
the subject is leading his (nearly) usual life.

The questions that concern us are: (1) how do we express and analyze non-lethal
heart rate variability and (2) what can be learned from heart rate variability, if it is
not a physiological state variable? (Potentially lethal dysrhythmias such as ventricular
tachycardia, ventricular fibrillation, or extreme bradycardia and asystole, are clinically
important in adults but not really relevant to the issue addressed by this conference.)
4.2 Signal Analysis of Heart Rate Variability

Sayers opens Chapter Three of the Kitney book [31] with this comment on the signal
analysis of heart rate variability:

“The beat-by-beat variations of heart-rate are neither quite deterministic nor entirely
random and, as with most biological variables, successive periods of lead to somewhat

different results - partly because of the operaiaion of changing biological factors, and partly



due to statistical sampling effects (...). The cardiac signal in this context can be regarded
as a sequence of point events (occurrences of P or R waves in an ECG) and two types of
approach are possible. First, some global features of the point-sequence could be measured.
Two such global measures are mean heart-rate and variance of interbeat intervals; this
kind of measure certainly reflects the existence of changing physiological conditions, but
only in a rather unspecific way (...). Such an approach can indicate nothing about any
sequential patterns traced out by successive intervals; but, as far as the heart-rate variable
is concerned, these patterns offer the only prospect of any detailed picture of the behavior
of underlying physiological mechanisms. Thus, a second type of approach is desirable, that
studies patteru features of the fluctuations of heart-rate.

An analysis which draws on the coherent dynamic features of these fluctuations, rather )
than on their global description, is potentially more likely to illuminate detailed system
structure and properties of the underlying physiological mechanisms.”

Because of the hyperbolic (inverse) relationship between the time series of interbeat
intervals (RR) and the so-called "instantaneous heart rate”, one must choose the form of
the data for analysis, focusing either on intervals or on rate. At slow heart rates variations
in interbeat intervals are not very sensitive indicators of variations in physiological effects;
cor.versely, at high heart rates variations in instantaneous rate are insensitive indicators.
One way around this uneven weighting is to use a sequence of interbeat intervals as the
primary data, but to express variability as done by Mazza et al. {34, viz. normalize the
DRR defined as : DRR, = RR.,1 - RR, where RR is the time in milliseconds from
the peak of one R wave to the next and "n" is the interval number in the ordered set
of a time history of the variable. The ratio %e‘ normalizes the absolute variability of
the heart beat interval to the underlying rate itself and corrects for the linear correlation

between DRR and RR which merely exprea‘sbeq the (essentially trivial) fact that in many



natural processes the absolute variability around a mean value increases as the value of the
mean itself increases (i.e., many processes naturally tend to have constant fractional error,
or coefficient of variation). After the normalization a new time series results that can be
analyzed for global statistical properties during different epochs, or that can be subjected
to spectral analysis, or treated in more advanced ways such of those of nonlinear mechanics.
Whenever spectral analysis is used on a physiological time history it is desirable to create
an artificial, contrn]l time series by shuffling the ordered set of the original. Shuffling
preserves the amplitude distribution but destroys the ordinal relationships. As a result of
shuffling the spectrum should be whitened and putative peaks seen in the spectrum of the
original time series should disappear (see Odell et al. [44]).

Once the normalized interval measure has been chosen as basic to the representation -
and analysis of heart rate variability, analytical descriptions such as the serial correlation
of intervals, the interval spectrum, and the band-filtered version of the interval sequence
all are useful. It is then necessary to decide whether the sample number in the sequence,
or time, should be used as the basis for displaying the sequence of events. It is not
necessary to convert a series of point events into a form that models the sequence as a
continuous underlying signal sampled re;ularly in time. In practice, such regularization
of the sequeuce of samples turns out to be entirely unimportant, except perhaps when it
is required to compare the cardiac signal with some simultaneous ongoing waveform, such
as mean arterial blood pressure, with reasonably high precision. But that can be dore by
basing a cross-spectral analysiv or coherence analysis between two time series on a serics of
sampled numbers, rather than equally spaced sampling times. Ultimately, of course, after
a spectral analysis it is desirable to ccnvert any significant "peaks” into some statement
about variations in time, in order to scale a problem physiologically. But that can be a

last step in the analysis. s



4.3 Respiratory Sinus Arrhythmia (RSA) (Respiratory- Circulatory System Coupling)

The importance of the coupling between respiratory periodicities and heart rate vari-
ability during development in infants is well illustrated by the work of Mazza, Gordin et
al. [34) Katona et al. [45]), and Harper et al. [46]. F. Raschke [47) has shown that the
strength of coupling between the cardiac and respiratory systems in adults varies with the
underlying physiological state. Spectral analysis of a time history of RR intervals in normal
young human beings reveals three peaks: 15/min (respiratory frequency), 7/min (changes
in mean arterial pressure) and 1/min (thought to represent flow mechanics of the arterial
system itself). In young subjects studied on a low protein diet at constant bed rest in a
constant environment, there is no clear circadian rhythm in RR interval, but during sleep
the distribution of periods is much narrower. The cardiovascular system has less variance
during sleep in adults, as in infants.

The coupling between the respiratory and cardiac systems has been expressed as a
phase coordination between a preceding R wave and inspiratory onset (48]. The coupling
is tightest during sleep; it is moderate during restful wake.ulness when the RSA shows
as a frequency modulation of heart rate, as expected. However, the two systems are en-
tirely decoupled during exercise - the relationship between them is then random. 'These
various degrees of coupling represent physical and hemodynamic constraints at the lowest
level, vagal-induced reflex coordination at the middle level, and central coordination at
the highest level. During exercise in untrained individuals a coupling between inspira-
tion/expiration respiratory cycling and the rhythm of walking or running is moderately
strong; as athletic training ic increased, the coupling becomes tighter between these two os-
cillatory behaviors, while the coupling between respiration and cardiac cycles is weakened.
We cite Raschke's work merely as an example of the fact that coupling strengths between

the cardiovascular and the respiratory syute{x_;s vary with physiological state in adults, as



well as in infants. Thus, a raw estimate of RSA, without providing some context, will be
insufficient for interpretation. An independent measure not involving respiration or circu-
lation is needed to define the state context in which RSA strength can be meaningfully
interpreted. There is no agreement on what that additional state information should be.
4.4 Is There a Chaotic Attractor that can be Revealed by Dimensional Analysis of Heart
Rate Vuriability?

The modern techniques of analysis of nonlinear dynamical systems [5] are just begin-
ning to be applied to time histories of normal heart rate data. These approaches emphasize
lag plots, mutual information, and the search for an attractc- and its dimension, that would
be characteristic of a physiological "state.” The state can be gross, merely sleep vs. wake-
fulness, or it might be more refined to encompass the minor states of eating, exercise, sexual i
activity, etc. An example of an analysis of the heart rate record from a normal 35-year
old woman (obtained from a time segment of a 24 hour Holter monitor recording) is dis-
cussed in section 2 above. This segraent corresponds to the time of ngq, = 828 heart beats
recorded during normal activity. Since perturbations in the recording are unavoidable this
also corresponds to the limit of contiguous data segments. The results from a later data
segment indicat: that the fluctuation of dimensionality is of the order of Ad = 0.5 which
corresponds to a relative change of about 10%.

As one possibility for increasing the number of data points we make the assumption that
both segments are generated by the same dynamical system and therefore the reconstructed
vectors lie on the same attractor. Therefore we can compute the dimension from both sets
as long as we make sure that the reconstruction is done properly, i.e. without mixing
of the segments. The results are shown in fig.17 for the combination of two segments of
Ndate.s = 828 and nyere.3 = 752 where we plot the dominant dimension as a function of the

enibedding dimension. Note the better con;rsergence and smaller errors compared to the



single segment data of fig. 8 (d4p == 5.8 £ 2.4 for the first segment, d4p = 5.6 + 1.6 for the
second segment, and d4p = 4.8 £ 1.9 for the combination of the two segments. In fig. 18
we see that the histogram is more normal compared to that of fig. 7. With this and similar
improvement it might turn out that dimension estimation has its cwn value as diagnostic
tool.
3. Muscle tremor

The neuronal activity and the time course of excitation within the human nervous
system (especiali the motor system) leads to minute oscillatory motions of the whole
organism or parts of it, which normally are in an order of magnitude far below percep-
tion thresholds of our (e.g. visual or acoustic) sensory organs. This vibratory output of
the CNS shows frequencies ranging from approx. 1 — 120 Hz and is usually classified as
body sway (1 — 3 Hz), different (limb- or finger-) tremors (6 — 16 Hz, max. < 25 Hz)
including eye tremor (< 120 Hz) and as rauscle tremec. or vibration (1 — 100 Hz), which
is of special interest in this context. The latter is mainly based on the phaenomenon
of electro-mechanical coupling: Electrical impulses (spikes) of the motor system are con-
verted in mechanical "ripples” (twitch contractions) of the related single muscle fibres,
which are connected cc “he innervating motor neurons via neuro-muscular juncticns. This
mechanism leads to a muscular vibration pattern, which mainly resembles the firing statis-
tics of related motor units. Indeed, spectral analysis (by FFT) of such "vibromyogram”
(VMG) reflecting the mechanical gross activity of a skeletal muscle reveals frequenc: praks
similar to the mean rhythmicity of spike discharge rates described in single unit studies
[49]. Other possible mechanisms underlying endogenous muscular vibrations are discussed
elsewhere more thoroughly [49). In the presented study concerning muscle oscillations the
following questions have been addressed: (i) Is the complexity of the mechanical spinal

CNS output (VMG) comparable to that of tl';e supraspinal electrical CNS output (EEG)?
1



(ii) Are the complexity parameters of the VMG stable cbservables. (iii) Does the VMG-
signal‘s complexity vary with the fun tional state of the muscle comparing relaxation ‘vith
isometrical contraction? (iili) Do lesicus of vne CNS, for instance caused by unilateral
cerebral infarctions affect the dimensionality of the oscillation pattern of the paretic (and
spastic) muscles? Tibialis and biceps muscles were investigated at rest and during isomet-
rical contraction. The muscle vibrations were recorded with an accelerometer attached
to the skin overlying the muscle of interest. Thec subjects and patients were lying in a
supine position with eyes closed. Different constant levels of force had to be maintained
over 4 minutes. Oscillations of the non-contracted muscles exhibited a low dimensional
‘chaos* with a (Grassberger-Procaccia) dimensionality of D = 4. Such resulting dimen-
sionality of a vibromyogram obtained from a ‘resting' right biceps muscle is shown in fig.19 i
(dgp = 4.4 2.4 at a goodness of fit GF = 0.12). Investigating the time course over 4 min-
utes by analyzing successive 20 sec segments a remarkable constancy of the dimensionality
became evident (fig.20). In fig. 21 we show the sequence of pointwise dimension values
which yield an average of d4p = 4.3+1.4. (see fig. 22 for the histogram; note the difference
to figs. 7, 13, 18). The good agreement with dgp could indicate a low non-uniformity of
the system [11].

In contrast, during isometrical contraction of the same biceps muscle (load of 30 New-
ton) higher dimensional chaos occurred. It was paralleled by an increase in dimensionality
up to dgp =~ 8. The corresponding spectral array can be found in ref. [49].

In patients with spastic hemiparesis caused by a contralateral cerebral infarction intra-
individual side-differences in the dimensionslity (up to a A D = 3) of bilateral muscle
oscillations simultaneously recorded could he found [to be published]. This change in
complexity may be due - among others - to a ‘pathological' mode of motor unit activity

[50,51]. The increase of the dimensional complexity of muscle vibrations during cont-action
20



seems to be reasonable as the whole ‘motor maschinery* of the nervous system is coming
into play. Thus, the preliminary results point out the predominant role of supraspinal CNS
influences to the chaos dimensionality of the muscular vibratory output. The disclosed
‘range of entropy’ seems {o be a gerneral feature of the human CNS activity as the order
parameters of the ‘mechano-spinal’ VMG correspond to dimensionalities of the ‘electro-
cortical’ EEG output [17-24].

Because of the preliminar:- nature of the results it is too early to draw definite conclu-
sions. But so far, a suggest a pragmatic value of chaos analysis in basic research
and clinical applicati... as methods of non-linear dynamics seem to determine character-
istics of (vibratory) biosignals, which are related to different (patho-)physiological states

and which cannot be disclos:d by conventional unalysis-techniques.
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Figure Captions

Fig. 1: Time series and planar state space reconstruction from inter beat intervals of a
heart of a healthy female, taken during regular daily activity with the help of a Holter
monitor. The delays in the reconstructions are k = 1 and k = 4.

Fig. 2: A series of gauge functions in a log-log representation for embedding dimensions
1 <n < 20 for the same heart data as in fig.1. We see for small values of log r the effect
of the finite resolution of the measurement (=~ 1%). The solid line indicate the fit region
for each embedding dimension determined by the algorithm.

Fig. 3: Selected scaling ranges for dimension estimation of the data of fig. 1. The solid
lines corresponds to a goodness of fit of GF = 0.2.

Fig. 4: Pointwise dimension dé‘, vs. index j. Since we have n4,;, = 828 interbeat intervals, -
the reference points E ; are separated by roughly four heart beats. The errorbars indicate
the goodness of fit relative to a value GF' = 0.2 indicated in the inset. For reference points
which reached this value we did not plot errorbars. The initial lenght of the fit region
corresponds to a scale factor a = f:: = /2. The embedding dimension is n = 20.

Fig. 5: Same as in fig. 2 after singular value decomposition with windowlength 100.

Fig. 6: Same as in fig. 3 after singular value decomposition.

Fig. 7: Histogram for the data of fig. 3 (solid lines) and for fig. 5 (dotted lines).

Fig. 8: Estimated dimension value < dy > vs. embedding dimension n. The error bars
correspond to to the standard deviation of the dimension distribution and are solid lines
for the original data and broken lines after singular value decomposition. Same data and
parameters as above.

Fig. 9: Percentage of reference points which reach a certain goodness of fit GF as u
function of GF and embedding dimension n. (Same scale factor as in fig. 3, no 5VD)
Fig. 10: Dominant dimension us a function of the goodness of it GF and embedding

dimension n. Same data and parameters as ;bove.



Fig. 11: Same as in fig. 9 after SVD.

Fig. 12: Standard deviation of dominant dimension as a function of the goodness of fit
GF and embedding dimension n (same condition as fig. ).

Fig. 13: same as fig. 6 but here we can see how the observed histogram depends on the
embedding space. (dotted line corresponds to fig. 7)

Fig. 14: Observed dimension of eeg data before anesthesia as a function of the embedding
dimesnion and teh goodness of fit (GF).

Fig. 15: Same as fig. 8 for eeg data before anesthesia. (GF = 0.1, scale factor a = 2.0)
Fig. 16: Same as fig. 15 during medium fluroxene anesthesia.

Fig. 17: Same as in fig. 8 for the concatenation of two data segments of length n4,,,1 = 828
and ngga,2 = 752. )
Fig. 18: Histogram for the data of fig. 17. (same parameter as in fig. 7)

Fig. 19: Grassberger-Procaccia dimension for non-contracted biceps muscles. (ngg,, =
10%, GF =0.12, a = 2, sampling rate w = 500H z)

Fig. 20: Sequence of dimension values of successive segments of ng,,, = 10* datapoints.

Fig. 21: Sequence of pointwise dimension values for data of fig. 19.

Fig. 22: Histogram of data of fig. 21 (note the difference to figs. 7, 13, 18).
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